新闻资讯

NEWS CENTER

减速齿轮修形及MASTA仿真


发布时间:

2021-04-29

材料弹性力学使得齿轮组啮合时,主、被动齿轮可简化为围绕轴心线旋转的悬臂梁模型,在承受负荷时会产生弯曲变形, 而且齿面接触区域存在弹性形变。

1、减速齿轮廓修形

材料弹性力学使得齿轮组啮合时,主、被动齿轮可简化为围绕轴心线旋转的悬臂梁模型,在承受负荷时会产生弯曲变形, 而且齿面接触区域存在弹性形变。另外,齿轮制造加工误差、壳体加工误差、装配等各种误差的客观影响,造成齿轮实际啮合点与理论啮合区域存在偏移, 产生了啮合冲击激励。为了减少齿轮啮合时产生的误差,在设计早期应该对齿轮的NVH做仿真预测。齿形修形是优化齿轮接触位置和应力大小的有效方法,微观修形可以针对啮合的一对齿轮,也可只做单齿轮修形优化,在工程实践中通常更多采取对单一齿轮修形,其具备较高的生产效率和较低的生产成本。

通常齿廓修形的关键影响因子有轮廓修形、宽度、齿根和齿顶修形,其中齿根修形参数的确定,需要兼顾修形参数的选择同时考虑齿轴的安全系数,避免齿根修形过大引起齿轮齿根弯曲强度的降低。展示了齿廓修形的常规形式,包括左右端直线修形、螺旋线修形和鼓性修形。具体齿廓修形的方案选择,需综合考虑输入负荷激励的大小、传递路径的刚度及易加工等因素,结合NVH仿真工具优选齿廓修形方案。

2、减速齿轮向修形

在承受负荷的工况下,齿轴材料产生了相应的围绕旋转轴心线的变形,还有客观存在的齿轮加工误差和减速器的装配误差, 综合产生了齿向上与理论啮合区的偏差。通过对齿向方向的修形优化,可以合理的分配齿面接触位置及大小。通常齿向修形有直线修形及鼓形修形2种形式。

综合工程开发经验,齿轮设计优化微观修形应达到下列目标:

(1) 优选在齿面中心接触,充分利用齿宽,避免边缘和齿顶受载;

(2) 电动车(EV)减速器输入级齿轮转速很高,其峰-峰TE值应小于2 μm;

(3) 较小化较大接触应力和齿面负荷分布系数;

(4) 传动误差和齿面接触应力作为修形设计、调整的依据。

关键词: